Response to Static Magnetic Field-Induced Stress in Scenedesmus obliquus and Nannochloropsis gaditana

Author:

Serrano Génesis,Miranda-Ostojic Carol,Ferrada Pablo,Wulff-Zotelle Cristian,Maureira Alejandro,Fuentealba Edward,Gallardo Karem,Zapata Manuel,Rivas MariellaORCID

Abstract

Magnetic fields in biological systems is a promising research field; however, their application for microalgae has not been fully exploited. This work aims to measure the enzymatic activity and non-enzymatic activity of two microalgae species in terms of superoxide dismutase (SOD), catalase (CAT), and carotenoids, respectively, in response to static magnetic fields-induced stress. Two magnet configurations (north and south) and two exposure modes (continuous and pulse) were applied. Two microalgae species were considered, the Scenedesmus obliquus and Nannochloropsis gaditana. The SOD activity increased by up to 60% in S. obliquus under continuous exposure. This trend was also found for CAT in the continuous mode. Conversely, under the pulse mode, its response was hampered as the SOD and CAT were reduced. For N. gaditana, SOD increased by up to 62% with the south configuration under continuous exposure. In terms of CAT, there was a higher activity of up to 19%. Under the pulsed exposure, SOD activity was up to 115%. The CAT in this microalga was increased by up to 29%. For N. gaditana, a significant increase of over 40% in violaxanthin production was obtained compared to the control, when the microalgae were exposed to SMF as a pulse. Depending on the exposure mode and species, this methodology can be used to produce oxidative stress and obtain an inhibitory or enhanced response in addition to the significant increase in the production of antioxidant pigments.

Funder

Fondo de Fomento al Desarrollo Científico y Tecnológico

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3