Self-Difference Convolutional Neural Network for Facial Expression Recognition

Author:

Liu LeyuanORCID,Jiang Rubin,Huo Jiao,Chen JingyingORCID

Abstract

Facial expression recognition (FER) is a challenging problem due to the intra-class variation caused by subject identities. In this paper, a self-difference convolutional network (SD-CNN) is proposed to address the intra-class variation issue in FER. First, the SD-CNN uses a conditional generative adversarial network to generate the six typical facial expressions for the same subject in the testing image. Second, six compact and light-weighted difference-based CNNs, called DiffNets, are designed for classifying facial expressions. Each DiffNet extracts a pair of deep features from the testing image and one of the six synthesized expression images, and compares the difference between the deep feature pair. In this way, any potential facial expression in the testing image has an opportunity to be compared with the synthesized “Self”—an image of the same subject with the same facial expression as the testing image. As most of the self-difference features of the images with the same facial expression gather tightly in the feature space, the intra-class variation issue is significantly alleviated. The proposed SD-CNN is extensively evaluated on two widely-used facial expression datasets: CK+ and Oulu-CASIA. Experimental results demonstrate that the SD-CNN achieves state-of-the-art performance with accuracies of 99.7% on CK+ and 91.3% on Oulu-CASIA, respectively. Moreover, the model size of the online processing part of the SD-CNN is only 9.54 MB (1.59 MB ×6), which enables the SD-CNN to run on low-cost hardware.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3