Abstract
The cost effectiveness of using exogenous phosphorus to remediate heavy metals in soil, which would alter the structure of the soil microbial community, had been widely acknowledged. In the present study, phospholipid fatty acid (PLFA) technology was taken as the breakthrough point, and rhizosphere soil microorganisms in different growth stages (jointing stage and maturity stage) of Minghui 86 (MH) and Yangdao No.6 (YD) rice were taken as the research objects. As revealed by the results, the rhizosphere soil microorganisms of MH and YD had distinct sensitivities to exogenous phosphorus and had a certain inhibitory effect on MH and YD enhancement. The sensitivity of rice root soil microorganisms to exogenous phosphorus also varied in different growth stages of rice. Bacteria were the dominant microorganism in the soil microbial community of rice roots, and the gain of exogenous phosphorus had a certain impact on the structure of the two soil microbial communities. Through analysis of the microbial community characteristics of MH rice and YD soil after adding exogenous phosphorus, further understanding was attained with respect to the effect of exogenous phosphorus on the microbial community characteristics of rice rhizosphere soil and the impact thereof on ecological functions.
Funder
National Science Foundation of China
Pioneer” and “Leading Goose” R&D Programs of Zhejiang
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献