Computational Simulations Identify Pyrrolidine-2,3-Dione Derivatives as Novel Inhibitors of Cdk5/p25 Complex to Attenuate Alzheimer’s Pathology

Author:

Zeb Amir,Kim Donghwan,Alam Sayed Ibrar,Son Minky,Kumar Raj,Rampogu Shailima,Parameswaran Saravanan,Shelake Rahul MahadevORCID,Rana Rabia Mukhtar,Parate Shraddha,Kim Jae-Yean,Lee Keun Woo

Abstract

Mechanistically, neurotoxic insults provoke Ca2+-mediated calpain activation, which cleaves the cytoplasmic region of membrane-embedded p35 and produces its truncated form p25. Upon physical interaction, cyclin-dependent kinase 5 (Cdk5) and p25 forms hyperactivated Cdk5/p25 complex and causes severe neuropathological aberrations including hyperphosphorylated tau-mediated neurofibrillary tangles formation, Alzheimer’s symptoms, and neuronal death. Therefore, the inhibition of Cdk5/p25 complex may relieve p-tau-mediated Alzheimer’s pathology. Herein, computational simulations have identified pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex. A ligand-based pharmacophore was designed and employed as 3D query to retrieve drug-like molecules from chemical databases. By molecular docking, drug-like molecules obtaining dock score > 67.67 (Goldcore of the reference compound) were identified. Molecular dynamics simulation and binding free energy calculation retrieved four pyrrolidine-2,3-dione derivatives as novel candidate inhibitors of Cdk5/p25. The root means square deviation of Cdk5/p25 in complex with candidate inhibitors obtained an average value of ~2.15 Å during the 30 ns simulation period. Molecular interactions analysis suggested that each inhibitor occupied the ATP-binding site of Cdk5/p25 and formed stable interactions. Finally, the binding free energy estimation suggested that each inhibitor had lowest binding energy than the reference compound (−113.10 kJ/mol) to recapitulate their strong binding with Cdk5/p25. Overall, these inhibitors could mitigate tau-mediated Alzheimer’s phenotype.

Publisher

MDPI AG

Subject

General Medicine

Reference68 articles.

1. Cyclin-dependent kinases: Engines, clocks, and microprocessors;Morgan;Annu. Rev. Cell Dev. Biol.,1997

2. Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression.

3. A family of human cdc2-related protein kinases;Meyerson;EMBO J.,1992

4. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system;Tsai;Development,1993

5. Purification and characterization of a novel proline-directed protein kinase from bovine brain;Lew;J. Biol. Chem.,1992

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3