Abstract
Pollen grain is a unique haploid organism characterized by two key physiological processes: activation of metabolism upon exiting dormancy and polar tube growth. In gymnosperms and flowering plants, these processes occur in different time frames and exhibit important features; identification of similarities and differences is still in the active phase. In angiosperms, the growth of male gametophyte is directed and controlled by its microenvironment, while in gymnosperms it is relatively autonomous. Recent reviews have detailed aspects of interaction between angiosperm female tissues and pollen such as interactions between peptides and their receptors; however, accumulated evidence suggests low-molecular communication, in particular, through ion exchange and ROS production, equally important for polar growth as well as for pollen germination. Recently, it became clear that ROS and ionic currents form a single regulatory module, since ROS production and the activity of ion transport systems are closely interrelated and form a feedback loop.
Funder
Russian Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献