Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice

Author:

Nakade Yukiomi,Kitano Rena,Yamauchi Taeko,Kimoto Satoshi,Sakamoto Kazumasa,Inoue Tadahisa,Kobayashi Yuji,Ohashi Tomohiko,Sumida YoshioORCID,Ito Kiyoaki,Yoneda Masashi

Abstract

The autonomic nervous system, consisting of sympathetic and parasympathetic branches, plays an important role in regulating metabolic homeostasis. The sympathetic nervous system (SNS) regulates hepatic lipid metabolism by regulating adrenergic receptor activation, resulting in the stimulation of hepatic very-low-density lipoprotein-triglyceride (TG) production in vivo. However, only a few studies on the relationship between SNS and hepatic steatosis have been reported. Here, we investigate the effect of adrenergic receptor agonists on hepatic steatosis in mice fed a high-fat diet (HFD). The α-adrenergic receptor agonist phenylephrine (10 mg/kg/d) or the β-adrenergic receptor agonist isoproterenol (30 mg/kg/d) was coadministered with HFD to male mice. After five weeks, hepatic steatosis, TG levels, and hepatic fat metabolism-related biomarkers were examined. HFD treatment induced hepatic steatosis, and cotreatment with phenylephrine, but not isoproterenol, attenuated this effect. Phenylephrine administration upregulated the mRNA levels of hepatic peroxisome proliferator-activated receptor alpha and its target genes (such as carnitine palmitoyltransferase 1) and increased hepatic β-hydroxybutyrate levels. Additionally, phenylephrine treatment increased the expression of the autophagosomal marker LC3-II but decreased that of p62, which is selectively degraded during autophagy. These results indicate that phenylephrine inhibits hepatic steatosis through stimulation of β-oxidation and autophagy in the liver.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3