Abstract
The delayed rectifier potassium IKs channel is an important regulator of the duration of the ventricular action potential. Hundreds of mutations in the genes (KCNQ1 and KCNE1) encoding the IKs channel cause long QT syndrome (LQTS). LQTS is a heart disorder that can lead to severe cardiac arrhythmias and sudden cardiac death. A better understanding of the IKs channel (here called the KCNQ1/KCNE1 channel) properties and activities is of great importance to find the causes of LQTS and thus potentially treat LQTS. The KCNQ1/KCNE1 channel belongs to the superfamily of voltage-gated potassium channels. The KCNQ1/KCNE1 channel consists of both the pore-forming subunit KCNQ1 and the modulatory subunit KCNE1. KCNE1 regulates the function of the KCNQ1 channel in several ways. This review aims to describe the current structural and functional knowledge about the cardiac KCNQ1/KCNE1 channel. In addition, we focus on the modulation of the KCNQ1/KCNE1 channel and its potential as a target therapeutic of LQTS.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference151 articles.
1. Anatomy of the action potential in the heart;Shih;Tex. Heart Inst. J.,1994
2. Cardiac electrophysiology: normal and ischemic ionic currents and the ECG
3. Molecular Physiology of Cardiac Repolarization
4. The long QT syndrome;Vincent;Indian Pacing Electrophysiol. J.,2002
5. Long-QT Syndrome
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献