Abstract
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
Funder
Bundesministerium für Ernährung und Landwirtschaft
Bundesministerium für Bildung, Wissenschaft und Forschung
Deutscher Akademischer Austauschdienst
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference125 articles.
1. Shades of gray: the world of quantitative disease resistance
2. FAOSTAT Databasehttp://www.fao.org/faostat/en/#data/QC%0A.
3. OECD-FAO Agricultural Outlook 2019–2028: Cerealshttp://www.agri-outlook.org/commodities/Cereals.pdf
4. Crop losses to pests
5. The global burden of pathogens and pests on major food crops
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献