Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel

Author:

Yuan Qiangqiang,Wang Zhigang,Zhang Yinghui,Ye Jieyun,Huang Yao,Huang Ankang

Abstract

The effect of warm rolling temperature on microstructure and texture of microcarbon dual-phase (DP) steel was investigated through scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results showed that with the increase of rolling temperature, the density and thickness of the deformation band first increased and then decreased. Ferrite and fine martensite were observed in the annealed sheet, and the ferrite had a much more homogeneous distribution in the sample rolled at 450 °C. During warm rolling, the ferrite developed a dominant γ-fiber and a weak α-texture. During the annealing of the rolled sheet, the intensity of the γ-fiber was increased and a weak {001}<100> texture developed in the sample rolled at room temperature. An increase in the rolling temperature generated an initial decrease and subsequent increase in the strength of the unfavorable {001}<110> texture in the annealed sheet. In addition, the strength reached a maximum at 550 °C due to an increase in the dissolved carbon in the matrix, which was result of carbide dissolution. By contrast, the intensity of the γ-fiber remained relatively higher and was deemed the weaker {001}<110> component in the annealed sheet rolled at 450 °C. Therefore, a larger texture factor (fγ-fiber/f(α-fiber+λ-fiber)) can be produced under this process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3