Microstructure Evolution of Selective Laser Melted Inconel 718: Influence of High Heating Rates

Author:

Tabaie SeyedmohammadORCID,Rézaï-Aria Farhad,Jahazi Mohammad

Abstract

Inconel 718 (IN718) superalloy samples fabricated by selective laser melting (SLM) were submitted to different heating cycles and their microstructural characteristics were investigated. The selected heating rates, ranging from 10 °C/min to 400 °C/s, represent different regions in the heat-affected zone (HAZ) of welded additively manufactured specimens. A combination of differential thermal analysis (DTA), high-resolution dilatometry, as well as laser confocal and electron microscopy were used to study the precipitation and dissolution of the secondary phases and microstructural features. For this purpose, the microstructure of the additively manufactured specimen was investigated from the bottom, in contact with the support, to the top surface. The results showed that the dissolution of γ″ and δ phases were delayed under high heating rates and shifted to higher temperatures. Microstructural analysis revealed that the Laves phase at the interdendritic regions was decomposed in specific zones near the surface of the samples. It was determined that the thickness and area fraction of these zones were inversely related to the applied heating rate. A possible mechanism based on the influence of heating rate on Nb diffusion in the interdendritic regions and core of the dendrites is proposed to interpret the observed changes in the microstructure.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3