Thickness Effect on Microstructure, Strength, and Toughness of a Quenched and Tempered 178 mm Thickness Steel Plate

Author:

Wang QinghaiORCID,Ye QibinORCID,Wang Zhaodong,Kan Liye,Wang HongtaoORCID

Abstract

We investigate here the thickness effect on microstructures and mechanical properties of a quenched and tempered 178 mm thickness ASTM A517 GrQ steel. The microstructures at sub-surface, 1/4 thickness (t/4), and 1/2 thickness (t/2) were characterized. A comparison of hardness, strength, and impact toughness of the different positions shows that the lowest strength and toughness occurred at t/2, where a mixture of coarse, tempered martensite and bainite were found, and their inter-lath boundaries were occupied with highly dense, film-like or coarse, spheroidized carbides. The cooling rate for transformation was measured to be 0.6 °C/s at t/2 from the industrial processing data. In addition, the alloy elements at t/2 were heavily segregated, as revealed by electron probe microanalysis (EPMA) and a microhardness test. The resulted coarse microstructures thus lowered both the yield strength and the impact energies significantly, e.g., the crack propagation energy was completely lost at −60 °C. This study correlates the variation of mechanical properties to varied transformed microstructures based on the industrial quenching condition, which shows promise for improving the designing of the hardenability and controlling the carbides for ultra-thick quenched and tempered steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3