Reaction Mechanism and Process Control of Hydrogen Reduction of Ammonium Perrhenate

Author:

Tang Junjie,Sun Yuan,Zhang Chunwei,Wang Long,Zhou Yizhou,Fang Dawei,Liu Yan

Abstract

The preparation of rhenium powder by a hydrogen reduction of ammonium perrhenate is the only industrial production method. However, due to the uneven particle size distribution and large particle size of rhenium powder, it is difficult to prepare high-density rhenium ingot. Moreover, the existing process requires a secondary high-temperature reduction and the deoxidization process is complex and requires a high-temperature resistance of the equipment. Attempting to tackle the difficulties, this paper described a novel process to improve the particle size distribution uniformity and reduce the particle size of rhenium powder, aiming to produce a high-density rhenium ingot, and ammonium perrhenate is completely reduced by hydrogen at a low temperature. When the particle size of the rhenium powder was 19.74 µm, the density of the pressed rhenium ingot was 20.106 g/cm3, which was close to the theoretical density of rhenium. In addition, the hydrogen reduction mechanism of ammonium perrhenate was investigated in this paper. The results showed that the disproportionation of ReO3 decreased the rate of the reduction reaction, and the XRD and XPS patterns showed that the increase in the reduction temperature was conducive to increasing the reduction reaction rate and reducing the influence of disproportionation on the reduction process. At the same reduction temperature, reducing the particle sizes of ammonium perrhenate was conducive to increasing the hydrogen reduction rate and reducing the influence of the disproportionation.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference35 articles.

1. Recent Development of Rhenium Technology;Li;China Molybdenum Ind.,2016

2. Properties and applications of rhenium and its alloys;Noar;AMMTIAC Q.,2010

3. Resources, Application and Extraction Status of Rhenium;Li;Precious Met.,2014

4. Consolidation methods for spherical rhenium and rhenium alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3