Influence of B and Nb Additions and Heat Treatments on the Mechanical Properties of Cu-Ni-Co-Cr-Si Alloy for High Pressure Die Casting Applications

Author:

Avila-Salgado Denis Ariel,Juárez-Hernández Arturo,Medina-Ortíz Fermín,Lara Banda MaríaORCID,Hernández-Rodríguez Marco Antonio Loudovic

Abstract

During the high pressure die casting process (HPDC), it is necessary to develop new designs and alloys for the copper plungers. In this research, two alloys Cu-9Ni-1Co-1.6Cr-2Si-1.3Fe-0.25B wt.% (A1) and Cu-9Ni-1Co-1.6Cr-2Si-0.1Fe-0.2Nb wt.% (A2) under different heat treatments (HT) were studied. Optical microscopy technique was applied to reveal the regions of dendritic morphology, also lower Secondary Dendrite Arm Spacing (SDAS); and different grain orientations. The results reveal that the solidification sequence is primary Cu dendrites and secondary intermetallics; heat treatments increase the redistribution of alloying elements in the interdendritic regions. During the heat treatments, some precipitates were found in the grain boundary after aging heat treatments for both alloys, which were determined by X-ray diffraction. Hardness test HRB presented a decrease with the solution heat treatment and an increase with the aging heat treatments proposed for both alloys. Finally, the wear resistances for both alloys were compared with a commercial alloy C17530, with decreased A1 with B additions having the best result in the as-cast condition 4.07 × 10−4 mm3/Nm, while for A2 with Nb additions wear resistance increased, with the best result in the one with aging heat treatment 1.69 × 10−4 mm3/Nm while for the C17530 alloy this was 2.74 × 10−4 mm3/Nm.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3