Abstract
The efficacy of monosodium glutamate (MSG) as a lixiviant for the selective and sustainable leaching of zinc and copper from electric arc furnace dust was tested. Batch leaching studies and XRD, XRF and SEM-EDS characterization confirmed the high leaching efficiency of zinc (reaching 99%) and copper (reaching 86%) leaving behind Fe, Al, Ca and Mg in the leaching residue. The separation factor (concentration ratio in pregnant leach solution) between zinc vs. other elements, and copper vs. other elements in the optimum condition could reach 11,700 and 250 times, respectively. The optimum conditions for the leaching scheme were pH 9, MSG concentration 1 M and pulp density 50 g/L. Kinetic studies (leaching time and temperature) revealed that the saturation value of leaching efficiency was attained within 2 h for zinc and 4 h for copper. Modeling of the kinetic experimental data indicated that the role of temperature on the leaching process was minor. The study also demonstrated the possibility of MSG recycling from pregnant leach solutions by precipitation as glutamic acid (>90% recovery).
Funder
Lembaga Ilmu Pengetahuan Indonesia
Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia
Subject
General Materials Science,Metals and Alloys
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献