Coupling Analysis of Compound Continuum Robots for Surgery: Another Line of Thought

Author:

Wei Hangxing12ORCID,Zhang Gang12ORCID,Wang Shengsong3,Zhang Peng12,Su Jing12,Du Fuxin12ORCID

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan 250061, China

2. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan 250061, China

3. Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China

Abstract

The compound continuum robot employs both concentric tube components and cable-driven continuum components to achieve its complex motions. Nevertheless, the interaction between these components causes coupling, which inevitably leads to reduced accuracy. Consequently, researchers have been striving to mitigate and compensate for this coupling-induced error in order to enhance the overall performance of the robot. This paper leverages the coupling between the components of the compound continuum robot to accomplish specific surgical procedures. Specifically, the internal concentric tube component is utilized to induce motion in the cable-driven external component, which generates coupled motion under the constraints of the cable. This approach enables the realization of high-precision surgical operations. Specifically, a kinematic model for the proposed robot is established, and an inverse kinematic algorithm is developed. In this inverse kinematic algorithm, the solution of a highly nonlinear system of equations is simplified into the solution of a single nonlinear equation. To demonstrate the effectiveness of the proposed approach, simulations are conducted to evaluate the efficiency of the algorithm. The simulations conducted in this study indicate that the proposed inverse kinematic (IK) algorithm improves computational speed by a significant margin. Specifically, it achieves a speedup of 2.8 × 103 over the Levenberg–Marquardt (LM) method. In addition, experimental results demonstrate that the coupled-motion system achieves high levels of accuracy. Specifically, the repetitive positioning accuracy is measured to be 0.9 mm, and the tracking accuracy is 1.5 mm. This paper is significant for dealing with the coupling of the compound continuum robot.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Shandong Province

Shandong Provincial Postdoctoral Innovative Talents Funded Scheme

Fundamental Research Funds for the Central Universities and Young Scholars Program of Shandong University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3