Multichannel Classifier for Recognizing Acoustic Impacts Recorded with a phi-OTDR

Author:

Barantsov Ivan Alekseevich1ORCID,Pnev Alexey Borisovich1,Koshelev Kirill Igorevich1,Garin Egor Olegovich1,Pozhar Nickolai Olegovich1,Khan Roman Igorevich1

Affiliation:

1. Photonics and Infra-Red Technology Scientific Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia

Abstract

The purpose of this work is to increase the security of the perimeter of an area from unauthorized intrusions by creating an improved algorithm for classifying acoustic impacts recorded with a sensor system based on a phase-sensitive optical time reflectometer (phi-OTDR). The algorithm includes machine learning, so a dataset consisting of two classes was assembled. The dataset consists of two classes. The first class is the data of the steps, and the second class is other non-stepping influences (engine noise, a passing car, a passing cyclist, etc.). As an intrusion signal, a human walking signal is analyzed and recorded in frames of 5 s, which passed the threshold condition. Since, in most cases, the intruder moves on foot to overcome the perimeter, the analysis of the acoustic effects generated during the step will increase the efficiency of the perimeter detection tools. When walking quietly, step signals can be quite weak, and background signals can contain high energy and visually resemble the signals you are looking for. Therefore, an algorithm was created that processes space–time diagrams developed in real time, which are grayscale images. At the same time, during the processing of one image, two more images are calculated, which are the result of processing the denoised autoencoder and the created mathematical model of the adaptive correlation. Then, the three obtained images are fed to the input of the created three-channel neural network classifier, which includes convolutional layers for the automatic extraction of spatial features. The probability of correctly detecting steps is 98.3% and that of background actions is 97.93%.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3