Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures

Author:

Kar Supratik,Leszczynski JerzyORCID

Abstract

Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity of these studied mixtures is completely different to the single components, which makes the toxicity evaluation of mixtures more critical and challenging. Interactions of individual chemicals in a mixture can result in multifaceted and considerable deviations in the apparent properties of its ingredients. It results in synergistic or antagonistic effects as opposed to the ideal case of additive behavior i.e., concentration addition (CA) and independent action (IA). The CA and IA are leading models for the assessment of joint activity supported by pharmacology literature. Animal models for toxicity testing are time- and money-consuming as well as unethical. Thus, computational approaches are already proven efficient alternatives for assessing the toxicity of chemicals by regulatory authorities followed by industries. In silico methods are capable of predicting toxicity, prioritizing chemicals, identifying risk and assessing, followed by managing, the risk. In many cases, the mechanism behind the toxicity from species to species can be understood by in silico methods. Until today most of the computational approaches have been employed for single chemical’s toxicity. Thus, only a handful of works in the literature and methods are available for a mixture’s toxicity prediction employing computational or in silico approaches. Therefore, the present review explains the importance of evaluation of a mixture’s toxicity, the role of computational approaches to assess the toxicity, followed by types of in silico methods. Additionally, successful application of in silico tools in a mixture’s toxicity predictions is explained in detail. Finally, future avenues towards the role and application of computational approaches in a mixture’s toxicity are discussed.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3