Theoretical and Experimental Investigation of the Effect of Pump Laser Frequency Fluctuations on Signal-to-Noise Ratio of Brillouin Dynamic Grating Measurement with Coherent FMCW Reflectometry

Author:

Kikuchi Tatsuya,Satoh Ryohei,Kurita Iori,Takada Kazumasa

Abstract

Signal-dependent speckle-like noise has constituted a serious factor in Brillouin-grating based frequency-modulated continuous-wave (FMCW) reflectometry and it has been indispensable for improving the signal-to-noise ratio (S/N) of the Brillouin dynamic grating measurement to clarify the noise generation mechanism. In this paper we show theoretically and experimentally that the noise is generated by the frequency fluctuations of the pump light from a laser diode (LD). We could increase the S/N from 36 to 190 merely by driving the LD using a current source with reduced technical noise. On the basis of our experimental result, we derived the theoretical formula for S/N as a function of distance, which contained the second and fourth-order moments of the frequency fluctuations, by assuming that the pump light frequency was modulated by the technical noise. We calculated S/N along the 1.35 m long optical fiber numerically using the measured power spectral density of the frequency fluctuations, and the resulting distributions agreed with the measured values in the 10 to 190 range. Since higher performance levels are required if the pump light source is to maintain the S/N as the fiber length increases, we can use the formula to calculate the light source specifications including the spectral width and rms value of the frequency fluctuations to achieve a high S/N while testing a fiber of a given length.

Funder

JSPS KAKENHI Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3