Sustainable Asphalt Rejuvenation by Using Waste Tire Rubber Mixed with Waste Oils

Author:

Aljarmouzi AshrafORCID,Dong RuikunORCID

Abstract

Waste materials such as waste tire rubber (WTR), waste cooking oil (WCO), bio-oils, waste engine oil (WEO), and other waste oils have been the subject of various scientific studies in the sustainable and waste research field. The current environmental concerns have been identified to protect natural resources and reuse waste materials. Accordingly, this work reviews the use of recycled waste tire rubber mixed with waste oils (waste cooking oil, waste engine oil) and bio-oils that can be extracted from waste oils to rejuvenate asphalt in reclaimed pavements. This new solution may reduce the massive amounts of WTR and waste oils and produce a more environmentally sustainable material. Reclaimed, aged asphalt has been rejuvenated to achieve various penetration capabilities and properties by blending asphalt with one or more waste materials to evaluate the binder using standard tests. Many solutions with promising results in improving the properties of asphalt mixtures have been selected for further characterization. This review highlights that the addition of WTR and waste materials to rejuvenated asphalt binders improves stability, enhances the viscoelastic properties, provides better fatigue and crack resistance performance, and enhances the compatibility of the rejuvenated rubber oil asphalt. Moreover, the flashing point, softening point, ductility, and penetration of aged asphalt and Poly(styrene-butadiene-styrene)-rubber-rejuvenated and waste-rubber-oil-rejuvenated asphalt were enhanced after applying the rejuvenator compound. On the other hand, adding waste oil to WTR and asphalt reduces the viscosity and enhances the storage stability compared to the asphalt rubber binder.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3