Derivation of Heat Conductivity from Temperature and Heat Flux Measurements in Soil

Author:

Stepanenko VictorORCID,Repina IrinaORCID,Artamonov ArseniyORCID

Abstract

The general inverse problem formulation for a heat conductance equation is adopted for the types of measurement routinely carried out in the soil active layer. The problem solution delivers a constant thermal diffusivity coefficient a0 (in general, different from true value a) and respective heat conductivity λ0 for the layer, located between two temperature sensors and equipped with a temperature or heat flux sensor in the middle. We estimated the error of solution corresponding to systematic shifts in sensor readings and mislocation of sensors in the soil column. This estimation was carried out by a series of numerical experiments using boundary conditions from observations on Mukhrino wetland (Western Siberia, Russia), performed in summer, 2019. Numerical results were corroborated by analytical estimates of inverse problem solution sensitivity derived from classical Fourier law. The main finding states that heat conductivity error due to systematic shifts in temperature measurements become negligible when using long temperature series, whereas the relative error of a is approximately twice the relative error of sensor depth. The error a0−a induced by heat flux plate displacement from expected depth is 3–5 times less than the same displacement of thermometers, which makes the requirements for heat flux installation less rigid. However, the relative errors of heat flux observation typical for modern sensors (±15%) cause the uncertainty of a above 15% in absolute value. Comparison of the inverse problem solution to a estimated from in situ moss sampling on Mukhrino wetland proves the feasibility of the method and corroborates the conclusions of the error sensitivity study.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Tyumen region Government in accordance with the Program of the West Siberian Interregional Scientific and Educational Center

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3