Evaluation of Leaf Litter Mulching and Incorporation on Skid Trails for the Recovery of Soil Physico-Chemical and Biological Properties of Mixed Broadleaved Forests

Author:

Jourgholami MeghdadORCID,Khoramizadeh Azadeh,Lo Monaco AngelaORCID,Venanzi Rachele,Latterini FrancescoORCID,Tavankar FarzamORCID,Picchio Rodolfo

Abstract

Engineering applications can be used to mitigate the adverse effects of soil compaction and amend compacted soils. Previous literature has highlighted the beneficial effects of interventions such as litter mulching and incorporation on skid trails. However, little is known about the effectiveness of these alternatives in restoring forest soil quality after forest logging. The objective of this study was to properly elucidate the effects of the above mentioned soil protection methods, litter incorporation before skidding (LI) and litter mulching after skidding (LM), on the recovery of compacted soil’s physico-chemical and biological properties on skid trails over a 2-year period in the Hyrcanian forests of Iran to identify the best option for restoration intervention. The litter used in both methods consisted of dried leaves of the hornbeam and maple tree in three intensities of 3, 6, and 9 Mg ha−1. The results showed that the application of both methods (LI and LM) significantly improved the soil properties when compared to the untreated skid trail. Results showed that the recovery values of soil properties in the LI treatments were significantly higher than those of the LM. The recovery values of soil properties by 6 and 9 Mg ha−1 were significantly higher than those of 3 Mg ha−1, while the differences were not significant between 6 and 9 Mg ha−1. Our findings showed that soil properties were partially recovered (70–80%) over a 2-year period from treatment, compared to untreated, but the full recovery of soil properties required more time to return to the pre-harvest value. Overall, the results of this study demonstrated that the application of soil protection methods accelerates the process of recovering soil properties much faster than natural soil recovery, which can take more than 20 years in these forests.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3