Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—II: Żelazny Most Tailings Dam

Author:

Mazzanti PaoloORCID,Antonielli BenedettaORCID,Sciortino Alessandra,Scancella Stefano,Bozzano FrancescaORCID

Abstract

The failures of tailings dams have a major negative impact on the economy, surrounding properties, and people’s lives, and therefore the monitoring of these facilities is crucial to mitigate the risk of failure, but this can be challenging due to their size and inaccessibility. In this work, the deformation processes at Żelazny Most tailings dam (Poland) were analyzed using satellite Ad-vanced Differential SAR Interferometry (A-DInSAR) from October 2014 to April 2019, showing that the dam is affected by both settlements (with a maximum rate of 30 mm/yr), and horizontal sliding in radial direction with respect to the ponds. The load of the tailings is pushing the dam forward along the glacio-tectonic shear planes located at depth, in the Pliocene clays, causing horizontal displacements at a rate up to 30 mm/yr, which could lead to a passive failure of the dam. The measured displacements have been compared with the ones observed by in situ data from the 90s to 2013, available in the literature. The outcomes indicate that intense localized deformations occur in the eastern and northern sectors of the dam, while the western sector is deforming evenly. Moreover, although the horizontal deformation had a slowdown from 2010 until 2013, it continued in 2014 to 2019 with recovered intensity. The upper and the recent embankments are affected by major settlements, possibly due to a lower consolidation degree of the most recent tailings and a larger thickness of compressible materials.

Funder

Sapienza Università di Roma

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3