LoRaCELL-Driven IoT Smart Lighting Systems: Sustainability in Urban Infrastructure

Author:

Biundini Iago Z.1,Pinto Milena F.2ORCID,Honório Leonardo M.1ORCID,Capretz Miriam A. M.3ORCID,Timotheo Amanda O.13ORCID,Dantas Mario A. R.1ORCID,Villela Priscilla C.4

Affiliation:

1. Department of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil

2. Department of Electronics Engineering, Federal Center for Technological Education of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil

3. Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B7, Canada

4. CEB Lajeado, Brasilia 71215-902, Brazil

Abstract

In recent years, the rate of urbanization has increased enormously, precipitating an escalating demand for improved services and applications in urban areas to improve the quality of life. In the Internet of Things (IoT)era, cities are transforming into smart urban centers. These cities incorporate connected devices, such as intelligent public lighting systems, to enhance their urban infrastructure. Therefore, this work explores the transformative potential of an IoT-enabled smart lighting system in urban environments, emphasizing its essential role in enhancing safety, economy, and sustainability. In this sense, LoRaCELL (Long-Range Cell) is introduced. LoRaCELL is an innovative system that utilizes edge devices for data collection, such as light intensity, humidity, temperature, air quality, solar ultraviolet radiation, ammeter, and voltmeter. It stands as a pioneering solution for intelligent public lighting systems, contributing to advancing IoT-driven urban development. The outcomes showed that the proposed system could successfully synchronize the devices with each other and send IoT sensing data at a low cost compared to traditional technologies such as LoRaWAN.

Funder

CEB-Lageado and CEB-Participações with the supervision of ANEEL, the Brazilian Regulatory Agency of Electricity

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3