On the Evaluation of Diverse Vision Systems towards Detecting Human Pose in Collaborative Robot Applications

Author:

Ramasubramanian Aswin K.1,Kazasidis Marios1ORCID,Fay Barry1,Papakostas Nikolaos1ORCID

Affiliation:

1. Laboratory for Advanced Manufacturing Simulation and Robotics, School of Mechanical and Materials Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland

Abstract

Tracking human operators working in the vicinity of collaborative robots can improve the design of safety architecture, ergonomics, and the execution of assembly tasks in a human–robot collaboration scenario. Three commercial spatial computation kits were used along with their Software Development Kits that provide various real-time functionalities to track human poses. The paper explored the possibility of combining the capabilities of different hardware systems and software frameworks that may lead to better performance and accuracy in detecting the human pose in collaborative robotic applications. This study assessed their performance in two different human poses at six depth levels, comparing the raw data and noise-reducing filtered data. In addition, a laser measurement device was employed as a ground truth indicator, together with the average Root Mean Square Error as an error metric. The obtained results were analysed and compared in terms of positional accuracy and repeatability, indicating the dependence of the sensors’ performance on the tracking distance. A Kalman-based filter was applied to fuse the human skeleton data and then to reconstruct the operator’s poses considering their performance in different distance zones. The results indicated that at a distance less than 3 m, Microsoft Azure Kinect demonstrated better tracking performance, followed by Intel RealSense D455 and Stereolabs ZED2, while at ranges higher than 3 m, ZED2 had superior tracking performance.

Funder

European Union Horizon 2020 Framework Programme—project SHERLOCK

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3