Minimum Energy Utilization Strategy for Fleet of Autonomous Robots in Urban Waste Management

Author:

Justo Valeria Bladinieres1ORCID,Gupta Abhishek2ORCID,Umland Tobias Fritz1ORCID,Göhlich Dietmar2ORCID

Affiliation:

1. Electrical Engineering and Computer Science, Technische Universität Berlin, 10623 Berlin, Germany

2. Methods of Product Development and Mechatronics, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

Many service robots have to operate in a variety of different Service Event Areas (SEAs). In the case of the waste collection robot MARBLE (Mobile Autonomous Robot for Litter Emptying) every SEA has characteristics like varying area and number of litter bins, with different distances between litter bins and uncertain filling levels of litter bins. Global positions of litter bins and garbage drop-off positions from MARBLEs after reaching their maximum capacity are defined as task-performing waypoints. We provide boundary delimitation for characteristics that describe the SEA. The boundaries interpolate synergy between individual SEAs and the developed algorithms. This helps in determining which algorithm best suits an SEA, dependent on the characteristics. The developed route-planning methodologies are based on vehicle routing with simulated annealing (VRPSA) and knapsack problems (KSPs). VRPSA uses specific weighting based on route permutation operators, initial temperature, and the nearest neighbor approach. The KSP optimizes a route’s given capacity, in this case using smart litter bins (SLBs) information. The game-theory KSP algorithm with SLBs information and the KSP algorithm without SLBs information performs better on SEAs lower than 0.5 km2, and with fewer than 50 litter bins. When the standard deviation of the fill rate of litter bins is ≈10%, the KSP without SLB is preferred, and if the standard deviation is between 25 and 40%, then the game-theory KSP is selected. Finally, the vehicle routing problem outperforms in SEAs with an area of 0.5≤5 km2, 50–450 litter bins, and a fill rate of 10–40%.

Funder

Berlin Program for Sustainable Development—BENE sponsored by the European Regional Development Fund

German Research Foundation

Open Access Publication Fund of TU Berlin

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3