A Vision Dynamics Learning Approach to Robotic Navigation in Unstructured Environments

Author:

Ginerica Cosmin1,Zaha Mihai1,Floroian Laura1,Cojocaru Dorian2ORCID,Grigorescu Sorin1

Affiliation:

1. Robotics, Vision and Control Laboratory (ROVIS), Transilvania University of Brasov, 500036 Brasov, Romania

2. Electronics and Mechatronics, Department of Automatic Control, University of Craiova, 200585 Craiova, Romania

Abstract

Autonomous legged navigation in unstructured environments is still an open problem which requires the ability of an intelligent agent to detect and react to potential obstacles found in its area. These obstacles may range from vehicles, pedestrians, or immovable objects in a structured environment, like in highway or city navigation, to unpredictable static and dynamic obstacles in the case of navigating in an unstructured environment, such as a forest road. The latter scenario is usually more difficult to handle, due to the higher unpredictability. In this paper, we propose a vision dynamics approach to the path planning and navigation problem for a quadruped robot, which navigates in an unstructured environment, more specifically on a forest road. Our vision dynamics approach is based on a recurrent neural network that uses an RGB-D sensor as its source of data, constructing sequences of previous depth sensor observations and predicting future observations over a finite time span. We compare our approach with other state-of-the-art methods in obstacle-driven path planning algorithms and perform ablation studies to analyze the impact of architectural changes to our model components, demonstrating that our approach achieves superior performance in terms of successfully generating collision-free trajectories for the intelligent agent.

Funder

Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3