A Deep Learning Approach to Merge Rule-Based and Human-Operated Camera Control for Teleoperated Robotic Systems

Author:

Jawad Luay1,Singh-Chudda Arshdeep2ORCID,Shankar Abhishek1ORCID,Pandya Abhilash2

Affiliation:

1. Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

2. Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

Abstract

Controlling a laparoscopic camera during robotic surgery represents a multifaceted challenge, demanding considerable physical and cognitive exertion from operators. While manual control presents the advantage of enabling optimal viewing angles, it is offset by its taxing nature. In contrast, current autonomous camera systems offer predictability in tool tracking but are often rigid, lacking the adaptability of human operators. This research investigates the potential of two distinct network architectures: a dense neural network (DNN) and a recurrent network (RNN), both trained using a diverse dataset comprising autonomous and human-driven camera movements. A comparative assessment of network-controlled, autonomous, and human-operated camera systems is conducted to gauge network efficacies. While the dense neural network exhibits proficiency in basic tool tracking, it grapples with inherent architectural limitations that hinder its ability to master the camera’s zoom functionality. In stark contrast, the recurrent network excels, demonstrating a capacity to sufficiently replicate the behaviors exhibited by a mixture of both autonomous and human-operated methods. In total, 96.8% of the dense network predictions had up to a one-centimeter error when compared to the test datasets, while the recurrent network achieved a 100% sub-millimeter testing error. This paper trains and evaluates neural networks on autonomous and human behavior data for camera control.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3