Practical Design Guidelines for Topology Optimization of Flexible Mechanisms: A Comparison between Weakly Coupled Methods

Author:

D’Imperio Simone1ORCID,Berruti Teresa Maria1,Gastaldi Chiara1ORCID,Soccio Pietro2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

2. Efort Europe S.r.l., Corso Duca Degli Abruzzi 2, 10128 Torino, Italy

Abstract

Industrial robots are complex systems, as they require the integration of several sub-assemblies to perform accurate operations. Moreover, they may experience remarkable dynamic actions due to high kinematic requirements, which are necessary to obtain reduced cycle times. The dynamic design of industrial robots can therefore be demanding, since the single structural component can induce an impact both in the design phase (development strategy and computational time) and at the machine level (global stiffness and natural frequencies). To this end, the present paper proposes first a topology optimization procedure based on the Equivalent Static Loads (ESL) method that integrates flexible multibody simulation outputs. The same procedure also foresees an intermediate static reduction to reduce and to precisely define the application points of the ESL. Secondly, an optimization procedure based on the Quasi-Static Loads (QSL) method integrating flexible multibody simulation outputs is proposed as well. The objective is to carry out a comparison between the two methods and consequently evaluate the benefits and drawbacks of the two. In the end, practical guidelines regarding the selection and application of the two methods are also provided to the reader.

Funder

Efort-Europe s.r.l

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3