Simulation-Based Comparison of Novel Automated Construction Systems

Author:

Herrmann Lukas,Boumann RolandORCID,Lehmann Mario,Müller Samuel,Bruckmann TobiasORCID

Abstract

As automated construction processes require large workspaces and high payloads, the use of cables is a reasonable approach to span wide distances and share loads. Therefore, a cable-driven parallel robot is a suitable choice for automated masonry construction. Another possible robotic system for this task consists of a set of cooperative drones, each connected to the end effector and the payload by a cable. Because of the similarities between the two robotic systems, the same object-oriented programmed software can be used for trajectory planning and subsequent investigations, making minor adjustments. The implemented optimizing path planning algorithm takes into account the physical boundaries, motion time, collision avoidance and energy requirements. Thus, a simulation-based comparison of the characteristics of both systems can be made. In this paper, the necessary physical models for both the drone system and the cable robot are derived in detail. Based on the common framework, this paper presents a comparison between the two robotic systems, defining two different scenarios. The first scenario demonstrates the functioning of the optimizer approach. The second scenario is used to compare the two systems. For this purpose, the trajectories for all 1720 masonry units of the first floor of a house are optimized. The analysis of the results shows that both systems can transport heavy loads, with the cable robot having advantages on smaller sites, while the drone system covers larger distances for the price of slower performance and higher energy consumption.

Funder

Federal Ministry of Economic Affairs and Energy

Ministry of Regional Identity, Communities and Local Government, Building and Gender Equality of the Land of North Rhine-Westphalia

Ministry of Regional Identity, Communities and Local Government, Building and Digitalization of the Land of North Rhine-Westphalia

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3