Design and Construction of Hybrid Autonomous Underwater Glider for Underwater Research

Author:

Siregar SimonORCID,Trilaksono Bambang Riyanto,Hidayat Egi Muhammad Idris,Kartidjo Muljowidodo,Habibullah Natsir,Zulkarnain Muhammad Fikri,Setiawan Handi Nugroho

Abstract

The main goal of this paper was to design and construct a hybrid autonomous underwater glider (HAUG) with a torpedo shape, a size of 230 cm in length and 24 cm in diameter. The control, navigation, and guidance system were executed simultaneously using a Udoo X86 minicomputer as the main server and three BeagleBone Black single-board computers as the clients. The simulations showed a controlled horizontal speed of 0.5 m/s in AUV mode and 0.39 to 0.51 m/s in glide mode with a pitch angle between 14.13∘ and 26.89∘. In addition, the field experiments under limited space showed the proposed HAUG had comparable results with the simulation, with a horizontal speed in AUV mode of 1 m/s and in glide mode of around 0.2 m/s. Moreover, the energy consumption with an assumption of three cycles of gliding motion per hour was 51.63 watts/h, which enabled the HAUG to perform a mission for 44.74 h. The proposed HAUG was designed to hold pressure up to 200 m under water and to perform underwater applications such as search and rescue, mapping, surveillance, monitoring, and maintenance.

Funder

Penelitian Pengabdian Masyarakat dan Inovasi (PPMI) Institut Teknologi Bandung 2022

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3