Constrained-Differential-Kinematics-Decomposition-Based NMPC for Online Manipulator Control with Low Computational Costs

Author:

Reinhold JanORCID,Baumann HenryORCID,Meurer ThomasORCID

Abstract

Flexibility combined with the ability to consider external constraints comprises the main advantages of nonlinear model predictive control (NMPC). Applied as a motion controller, NMPC enables applications in varying and disturbed environments, but requires time-consuming computations. Hence, given the full nonlinear multi-DOF robot model, a delay-free execution providing short control horizons at appropriate prediction horizons for accurate motions is not applicable in common use. This contribution introduces an approach that analyzes and decomposes the differential kinematics similar to the inverse kinematics method to assign Cartesian boundary conditions to specific systems of equations during the model building, reducing the online computational costs. The resulting fully constrained NMPC realizes the translational obstacle avoidance during trajectory tracking using a reduced model considering both joint and Cartesian constraints coupled with a Jacobian transposed controller performing the end-effector’s orientation correction. Apart from a safe distance from the obstacles, the presented approach does not lead to any limitations of the reachable workspace, and all degrees of freedom (DOFs) of the robot are used. The simulative evaluation in Gazebo using the Stäubli TX2-90 commanded of ROS on a standard computer emphasizes the significantly lower online computational costs, accuracy analysis, and extended adaptability in obstacle avoidance, providing additional flexibility. An interpretation of the new concept is discussed for further use and extensions.

Funder

federal state of Schleswig-Holstein

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3