Human Factors Assessment of a Novel Pediatric Lower-Limb Exoskeleton

Author:

Goo Anthony C.1ORCID,Wiebrecht Jason J.1ORCID,Wajda Douglas A.2,Sawicki Jerzy T.1

Affiliation:

1. Center for Rotating Machinery Dynamics and Control (RoMaDyC), Washkewicz College of Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115-2214, USA

2. Department of Health and Human Performance, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 4115-2214, USA

Abstract

While several lower-limb exoskeletons have been designed for adult patients, there remains a lack of pediatric-oriented devices. This paper presented a human factor assessment of an adjustable pediatric lower-limb exoskeleton for childhood gait assistance. The hip and knee exoskeleton uses an adjustable frame for compatibility with children 6–11 years old. This assessment evaluates the device’s comfort and ease of use through timed donning, doffing, and reconfiguration tasks. The able-bodied study participants donned the device in 6 min and 8 s, doffed it in 2 min and 29 s, and reconfigured it in 8 min and 23 s. The results of the timed trials suggest that the exoskeleton can be easily donned, doffed, and reconfigured to match the anthropometrics of pediatric users. A 6-min unpowered walking experiment was conducted while the child participant wore the exoskeletal device. Inspection of both the device and participant yielded no evidence of damage to either the device or wearer. Participant feedback on the device was positive with a system usability scale rating of 80/100. While minor improvements can be made to the adjustability indicators and padding placement, the results indicate the exoskeleton is suitable for further experimental evaluation through assistive control assessments.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a Lower Limb Exoskeleton: Robust Control, Simulation and Experimental Results;Algorithms;2023-09-20

2. Design and Modeling of an Exoskeleton Robotic System for the Rehabilitation of Lower Limbs;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3