Effects of Temperature and Mounting Configuration on the Dynamic Parameters Identification of Industrial Robots

Author:

Raviola AndreaORCID,Guida RobertoORCID,De Martin Andrea,Pastorelli StefanoORCID,Mauro StefanoORCID,Sorli MassimoORCID

Abstract

Dynamic parameters are crucial for the definition of high-fidelity models of industrial manipulators. However, since they are often partially unknown, a mathematical model able to identify them is discussed and validated with the UR3 and the UR5 collaborative robots from Universal Robots. According to the acquired experimental data, this procedure allows for reducing the error on the estimated joint torques of about 90% with respect to the one obtained using only the information provided by the manufacturer. The present research also highlights how changes in the robot operating conditions affect its dynamic behavior. In particular, the identification process has been applied to a data set obtained commanding the same trajectory multiple times to both robots under rising joints temperatures. Average reductions of the viscous friction coefficients of about 20% and 17% for the UR3 and the UR5 robots, respectively, have been observed. Moreover, it is shown how the manipulator mounting configuration affects the number of the base dynamic parameters necessary to properly estimate the robots’ joints torques. The ability of the proposed model to take into account different mounting configurations is then verified by performing the identification procedure on a data set generated through a digital twin of a UR5 robot mounted on the ceiling.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference50 articles.

1. Parameters for Calculations of Kinematics and Dynamicshttps://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

2. Modeling and Identification for High-Performance Robot Control: An RRR-Robotic Arm Case Study

3. Rapid Prototyping of a Model-Based Control With Friction Compensation for a Direct-Drive Robot

4. Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3