Abstract
Cable robots are widely used in the field of rehabilitation. These robots differ from other cable robots because the cables are rather short and are usually equipped with magnetic hooks to improve the ease of use. The vibrations of rehabilitation robots are dominated by the effects of the hooks and payloads, whereas the cables behave as massless springs. In this paper, a 2D model of the cables of a robot that simulates both longitudinal and transverse vibrations is developed and experimentally validated. Then the model is extended to simulate the vibrations of an actual 3D robot in the symmetry planes. Finally, the calculated modal properties (natural frequencies and modes of vibration) are compared with the typical spectrum of excitation due to the cable’s motion. Only the first transverse mode can be excited during the rehabilitation exercise.
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献