A Framework for Enhanced Human–Robot Collaboration during Disassembly Using Digital Twin and Virtual Reality

Author:

Hoebert Timon1ORCID,Seibel Stephan2,Amersdorfer Manuel3ORCID,Vincze Markus4ORCID,Lepuschitz Wilfried1,Merdan Munir1

Affiliation:

1. Practical Robotics Institute Austria, 1200 Vienna, Austria

2. Boxx IT Solutions, 69509 Bonsweiher, Germany

3. Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany

4. Automation and Control Institute, TU Wien, 1040 Vienna, Austria

Abstract

This paper presents a framework that integrates digital twin and virtual reality (VR) technologies to improve the efficiency and safety of human–robot collaborative systems in the disassembly domain. With the increasing complexity of the handling of end-of-life electronic products and as the related disassembly tasks are characterized by variabilities such as rust, deformation, and diverse part geometries, traditional industrial robots face significant challenges in this domain. These challenges require adaptable and flexible automation solutions that can work safely alongside human workers. We developed an architecture to address these challenges and support system configuration, training, and operational monitoring. Our framework incorporates a digital twin to provide a real-time virtual representation of the physical disassembly process, allowing for immediate feedback and dynamic adjustment of operations. In addition, VR is used to simulate and optimize the workspace layout, improve human–robot interaction, and facilitate safe and effective training scenarios without the need for physical prototypes. A unique case study is presented, where the collaborative system is specifically applied to the disassembly of antenna amplifiers, illustrating the potential of our comprehensive approach to facilitate engineering processes and enhance collaborative safety.

Funder

“ICT of the Future DE-AT AI” program of the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology

German Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3