An Adaptive Assistance Controller to Optimize the Exoskeleton Contribution in Rehabilitation

Author:

Nasiri RezvanORCID,Shushtari Mohammad,Arami ArashORCID

Abstract

In this paper, we present a novel adaptation rule to optimize the exoskeleton assistance in rehabilitation tasks. The proposed method adapts the exoskeleton contribution to user impairment severity without any prior knowledge about the user motor capacity. The proposed controller is a combination of an adaptive feedforward controller and a low gain adaptive PD controller. The PD controller guarantees the stability of the human-exoskeleton system during feedforward torque adaptation by utilizing only the human-exoskeleton joint positions as the sensory feedback for assistive torque optimization. In addition to providing a convergence proof, in order to study the performance of our method we applied it to a simplified 2-DOF model of human-arm and a generic 9-DOF model of lower limb to perform walking. In each simulated task, we implemented the impaired human torque to be insufficient for the task completion. Moreover, the scenarios that violate our convergence proof assumptions are considered. The simulation results show a converging behavior for the proposed controller; the maximum convergence time of 20 s is observed. In addition, a stable control performance that optimally supplements the remaining user motor contribution is observed; the joint angle tracking error in steady condition and its improvement compared to the start of adaptation are as follows: shoulder 0.96±2.53° (76%); elbow −0.35±0.81° (33%); hip 0.10±0.86° (38%); knee −0.19±0.67° (25%); and ankle −0.05±0.20° (60%). The presented simulation results verify the robustness of proposed adaptive method in cases that differ from our mathematical assumptions and indicate its potentials to be used in practice.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3