Generating a Dataset for Semantic Segmentation of Vine Trunks in Vineyards Using Semi-Supervised Learning and Object Detection

Author:

Slaviček Petar1ORCID,Hrabar Ivan2ORCID,Kovačić Zdenko1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

2. Autegra d.o.o., Vladimira Nazora 5, 43280 Garešnica, Croatia

Abstract

This article describes an experimentally tested approach using semi-supervised learning for generating new datasets for semantic segmentation of vine trunks with very little human-annotated data, resulting in significant savings in time and resources. The creation of such datasets is a crucial step towards the development of autonomous robots for vineyard maintenance. In order for a mobile robot platform to perform a vineyard maintenance task, such as suckering, a semantically segmented view of the vine trunks is required. The robot must recognize the shape and position of the vine trunks and adapt its movements and actions accordingly. Starting with vine trunk recognition and ending with semi-supervised training for semantic segmentation, we have shown that the need for human annotation, which is usually a time-consuming and expensive process, can be significantly reduced if a dataset for object (vine trunk) detection is available. In this study, we generated about 35,000 images with semantic segmentation of vine trunks using only 300 images annotated by a human. This method eliminates about 99% of the time that would be required to manually annotate the entire dataset. Based on the evaluated dataset, we compared different semantic segmentation model architectures to determine the most suitable one for applications with mobile robots. A balance between accuracy, speed, and memory requirements was determined. The model with the best balance achieved a validation accuracy of 81% and a processing time of only 5 ms. The results of this work, obtained during experiments in a vineyard on karst, show the potential of intelligent annotation of data, reducing the time required for labeling and thus paving the way for further innovations in machine learning.

Funder

project titled Heterogeneous Autonomous Robotic System in Viticulture and Mariculture

European Union through the European Regional Development Fund—The Competitiveness and Cohesion Operational Programme

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3