Visual Intelligence: Prediction of Unintentional Surgical-Tool-Induced Bleeding during Robotic and Laparoscopic Surgery

Author:

Daneshgar Rahbar MostafaORCID,Ying Hao,Pandya Abhilash

Abstract

Unintentional vascular damage can result from a surgical instrument’s abrupt movements during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing algorithm based on local entropy is proposed that can detect abrupt movements of surgical instruments and predict bleeding occurrence. The uniform nature of the texture of surgical tools is utilized to segment the tools from the background. By comparing changes in entropy over time, the algorithm determines when the surgical instruments are moved abruptly. We tested the algorithm using 17 videos of minimally invasive surgery, 11 of which had tool-induced bleeding. Our preliminary testing shows that the algorithm is 88% accurate and 90% precise in predicting bleeding. The average advance warning time for the 11 videos is 0.662 s, with the standard deviation being 0.427 s. The proposed approach has the potential to eventually lead to a surgical early warning system or even proactively attenuate tool movement (for robotic surgery) to avoid dangerous surgical outcomes.

Funder

Michigan Translational Research and Commercializatio

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3