Using Simulation to Evaluate a Tube Perception Algorithm for Bin Picking

Author:

Leão GonçaloORCID,Costa Carlos M.ORCID,Sousa ArmandoORCID,Reis Luís PauloORCID,Veiga GermanoORCID

Abstract

Bin picking is a challenging problem that involves using a robotic manipulator to remove, one-by-one, a set of objects randomly stacked in a container. In order to provide ground truth data for evaluating heuristic or machine learning perception systems, this paper proposes using simulation to create bin picking environments in which a procedural generation method builds entangled tubes that can have curvatures throughout their length. The output of the simulation is an annotated point cloud, generated by a virtual 3D depth camera, in which the tubes are assigned with unique colors. A general metric based on micro-recall is proposed to compare the accuracy of point cloud annotations with the ground truth. The synthetic data is representative of a high quality 3D scanner, given that the performance of a tube modeling system when given 640 simulated point clouds was similar to the results achieved with real sensor data. Therefore, simulation is a promising technique for the automated evaluation of solutions for bin picking tasks.

Funder

Fundação para a Ciência e Tecnologia

European Social Fund

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3