Abstract
This study proposes a performance index for the dimensional optimization of parallel manipulators with specific tasks. In particular, the index evaluates the dexterity of the mechanism to be designed and compares it with that of the required specific task, e.g., rehabilitation tasks. The proposed index is implemented to design a 3UPS + RPU parallel manipulator for performing physical rehabilitation treatments on lower limbs. First, the condition numbers of both the mechanism and the lower limb are determined. Subsequently, the indexes are compared such that both systems exhibit similar dexterity. As a case study, the approach is implemented in the dimensional synthesis of the 3UPS + RPU parallel manipulator. The optimization approach enables obtaining a dexterity space of the mechanism that best matches that of the lower limb. The results are graphically presented, showing the matching areas of both workspaces, verifying the effectiveness of the proposed index.
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献