Multi-Robot Routing Problem with Min–Max Objective

Author:

David JenniferORCID,Rögnvaldsson ThorsteinnORCID

Abstract

In this paper, we study the “Multi-Robot Routing problem” with min–max objective (MRR-MM) in detail. It involves the assignment of sequentially ordered tasks to robots such that the maximum cost of the slowest robot is minimized. The problem description, the different types of formulations, and the methods used across various research communities are discussed in this paper. We propose a new problem formulation by treating this problem as a permutation matrix. A comparative study is done between three methods: Stochastic simulated annealing, deterministic mean-field annealing, and a heuristic-based graph search method. Each method is investigated in detail with several data sets (simulation and real-world), and the results are analysed and compared with respect to scalability, computational complexity, optimality, and its application to real-world scenarios. The paper shows that the heuristic method produces results very quickly with good scalability. However, the solution quality is sub-optimal. On the other hand, when optimal or near-optimal results are required with considerable computational resources, the simulated annealing method proves to be more efficient. However, the results show that the optimal choice of algorithm depends on the dataset size and the available computational budget. The contribution of the paper is three-fold: We study the MRR-MM problem in detail across various research communities. This study also shows the lack of inter-research terminology that has led to different names for the same problem. Secondly, formulating the task allocation problem as a permutation matrix formulation has opened up new approaches to solve this problem. Thirdly, we applied our problem formulation to three different methods and conducted a detailed comparative study using real-world and simulation data.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference66 articles.

1. Multi-robot search and rescue: A potential field based approach;Baxter,2007

2. Coordinated multi-robot exploration

3. Distributed Multirobot Exploration and Mapping

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3