Human Robot Hand Interaction with Plastic Deformation Control

Author:

Murakami KenichiORCID,Ishimoto Koki,Senoo TakuORCID,Ishikawa MasatoshiORCID

Abstract

In recent years, force control has become more important due to the physical interaction of robots with humans and applications of robots to complex environments. Impedance control is widely used in force control; however, it cannot reproduce the behavior of plastic deformation because it returns to the initial position when the force is removed, similar to elastic deformation. On the other hand, Senoo et al. have proposed plastic deformation control based on the Maxwell model. However, because plastic deformation control is model-based, it is subject to the modeling and parameter errors of the controlled system. A robot hand is relatively small and lightweight; because it uses a gearbox with a high reduction ratio for its joints, it is significantly affected by friction and tends to deviate strongly from the desired motion. Therefore, in this study, a method that is robust against modeling and parameter errors is proposed by feeding back the error from the desired trajectory with the inner position loop. Then, the effectiveness of the proposed method is shown through simulations and experiments using an actual robotic system.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Force Sensorless Physical Interaction Based on Plastic Behavior Control Without Inertia Shaping;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28

2. Three-Dimensional Imaging of Metallic Grain by Stacking the Microscopic Images;Applied Sciences;2021-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3