A Deep Reinforcement-Learning Approach for Inverse Kinematics Solution of a High Degree of Freedom Robotic Manipulator

Author:

Malik AryslanORCID,Lischuk Yevgeniy,Henderson Troy,Prazenica Richard

Abstract

The foundation and emphasis of robotic manipulator control is Inverse Kinematics (IK). Due to the complexity of derivation, difficulty of computation, and redundancy, traditional IK solutions pose numerous challenges to the operation of a variety of robotic manipulators. This paper develops a Deep Reinforcement Learning (RL) approach for solving the IK problem of a 7-Degree of Freedom (DOF) robotic manipulator using Product of Exponentials (PoE) as a Forward Kinematics (FK) computation tool and the Deep Q-Network (DQN) as an IK solver. The selected approach is architecturally simpler, making it faster and easier to implement, as well as more stable, because it is less sensitive to hyperparameters than continuous action spaces algorithms. The algorithm is designed to produce joint-space trajectories from a given end-effector trajectory. Different network architectures were explored and the output of the DQN was implemented experimentally on a Sawyer robotic arm. The DQN was able to find different trajectories corresponding to a specified Cartesian path of the end-effector. The network agent was able to learn random Bézier and straight-line end-effector trajectories in a reasonable time frame with good accuracy, demonstrating that even though DQN is mainly used in discrete solution spaces, it could be applied to generate joint space trajectories.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3