Towards Prosthesis Control: Identification of Locomotion Activities through EEG-Based Measurements

Author:

Zafar Saqib12ORCID,Maqbool Hafiz Farhan23ORCID,Ashraf Muhammad Imran2,Malik Danial Javaid2,Abdeen Zain ul2,Ali Wahab2,Taborri Juri1ORCID,Rossi Stefano1ORCID

Affiliation:

1. Department of Economics, Engineering, Society and Business Organization, University of Tuscia, 01100 Viterbo, Italy

2. Department of Mechanical, Mechatronics, and Manufacturing Engineering, University of Engineering and Technology, Lahore 38000, Pakistan

3. Human-Centered Robotics Lab, National Centre of Robotics and Automation, Lahore 45200, Pakistan

Abstract

The integration of advanced control systems in prostheses necessitates the accurate identification of human locomotion activities, a task that can significantly benefit from EEG-based measurements combined with machine learning techniques. The main contribution of this study is the development of a novel framework for the recognition and classification of locomotion activities using electroencephalography (EEG) data by comparing the performance of different machine learning algorithms. Data of the lower limb movements during level ground walking as well as going up stairs, down stairs, up ramps, and down ramps were collected from 10 healthy volunteers. Time- and frequency-domain features were extracted by applying independent component analysis (ICA). Successively, they were used to train and test random forest and k-nearest neighbors (kNN) algorithms. For the classification, random forest revealed itself as the best-performing one, achieving an overall accuracy up to 92%. The findings of this study contribute to the field of assistive robotics by confirming that EEG-based measurements, when combined with appropriate machine learning models, can serve as robust inputs for prosthesis control systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3