Learning Advanced Locomotion for Quadrupedal Robots: A Distributed Multi-Agent Reinforcement Learning Framework with Riemannian Motion Policies

Author:

Wang Yuliu12ORCID,Sagawa Ryusuke12ORCID,Yoshiyasu Yusuke2ORCID

Affiliation:

1. Intelligent and Mechanical Interaction System, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan

2. Computer Vision Research Team, Artificial Intelligence Research Center, The National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8560, Ibaraki, Japan

Abstract

Recent advancements in quadrupedal robotics have explored the motor potential of these machines beyond simple walking, enabling highly dynamic skills such as jumping, backflips, and even bipedal locomotion. While reinforcement learning has demonstrated excellent performance in this domain, it often relies on complex reward function tuning and prolonged training times, and the interpretability is not satisfactory. Riemannian motion policies, a reactive control method, excel in handling highly dynamic systems but are generally limited to fully actuated systems, making their application to underactuated quadrupedal robots challenging. To address these limitations, we propose a novel framework that treats each leg of a quadrupedal robot as an intelligent agent and employs multi-agent reinforcement learning to coordinate the motion of all four legs. This decomposition satisfies the conditions for utilizing Riemannian motion policies and eliminates the need for complex reward functions, simplifying the learning process for high-level motion modalities. Our simulation experiments demonstrate that the proposed method enables quadrupedal robots to learn stable locomotion using three, two, or even a single leg, offering advantages in training speed, success rate, and stability compared to traditional approaches, and better interpretability. This research explores the possibility of developing more efficient and adaptable control policies for quadrupedal robots.

Funder

Japan Science and Technology Agency Support for Pioneering Research Initiated by the Next Generation

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3