Robotic Nursing Assistant Applications and Human Subject Tests through Patient Sitter and Patient Walker Tasks

Author:

Lundberg Cody Lee,Sevil Hakki ErhanORCID,Behan Deborah,Popa Dan O.

Abstract

This study presents the implementation of basic nursing tasks and human subject tests with a mobile robotic platform (PR2) for hospital patients. The primary goal of this study is to define the requirements for a robotic nursing assistant platform. The overall designed application scenario consists of a PR2 robotic platform, a human subject as the patient, and a tablet for patient–robot communication. The PR2 robot understands the patient’s request and performs the requested task by performing automated action steps. Two categories and three tasks are defined as: patient sitter tasks, include object fetching and temperature measurement, and patient walker tasks, including supporting the patient while they are using the walker. For this designed scenario and these tasks, human subject tests are performed with 27 volunteers in the Assistive Robotics Laboratory at the University of Texas at Arlington Research Institute (UTARI). Results and observations from human subject tests are provided. These activities are part of a larger effort to establish adaptive robotic nursing assistants (ARNA) for physical tasks in hospital environments.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference53 articles.

1. Nurses Shift, Aiming for More Time with Patientshttps://www.wsj.com/articles/nurses-shift-aiming-for-more-time-with-patients-1405984193

2. A wheelchair mounted assistive robot;Hillman;Proc. ICORR,1999

3. Robotic smart house to assist people with movement disabilities

4. MANUS—A wheelchair-mounted rehabilitation robot;Driessen;Proc. Inst. Mech. Eng. Part J. Eng. Med.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3