Estimation of Knee Assistive Moment in a Gait Cycle Using Knee Angle and Knee Angular Velocity through Machine Learning and Artificial Stiffness Control Strategy (MLASCS)

Author:

Pornpipatsakul Khemwutta1,Ajavakom Nopdanai1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Nowadays, many people around the world cannot walk perfectly because of their knee problems. A knee-assistive device is one option to support walking for those with low or not enough knee muscle forces. Many research studies have created knee devices with control systems implementing different techniques and sensors. This study proposes an alternative version of the knee device control system without using too many actuators and sensors. It applies the machine learning and artificial stiffness control strategy (MLASCS) that uses one actuator combined with an encoder for estimating the amount of assistive support in a walking gait from the recorded gait data. The study recorded several gait data and analyzed knee moments, and then trained a k-nearest neighbor model using the knee angle and the angular velocity to classify a state in a gait cycle. This control strategy also implements instantaneous artificial stiffness (IAS), a control system that requires only knee angle in each state to determine the amount of supporting moment. After validating the model via simulation, the accuracy of the machine learning model is around 99.9% with the speed of 165 observers/s, and the walking effort is reduced by up to 60% in a single gait cycle.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3