Representation of Multiple Acoustic Sources in a Virtual Image of the Field of Audition from Binaural Synthetic Aperture Processing as the Head is Turned

Author:

Tamsett DuncanORCID

Abstract

The representation of multiple acoustic sources in a virtual image of the field of audition based on binaural synthetic-aperture computation (SAC) is described through use of simulated inter-aural time delay (ITD) data. Directions to the acoustic sources may be extracted from the image. ITDs for multiple acoustic sources at an effective instant in time are implied for example by multiple peaks in the coefficients of a short-time base (≈2.25 ms for an antennae separation of 0.15 m) cross correlation function (CCF) of acoustic signals received at the antennae. The CCF coefficients for such peaks at the time delays measured for a given orientation of the head are then distended over lambda circles in a short-time base instantaneous acoustic image of the field of audition. Numerous successive short-time base images of the field of audition generated as the head is turned are integrated into a mid-time base (up to say 0.5 s) acoustic image of the field of audition. This integration as the head turns constitutes a SAC. The intersections of many lambda circles at points in the SAC acoustic image generate maxima in the integrated CCF coefficient values recorded in the image. The positions of the maxima represent the directions to acoustic sources. The locations of acoustic sources so derived provide input for a process managing the long-time base (>10s of seconds) acoustic image of the field of audition representing the robot’s persistent acoustic environmental world view. The virtual images could optionally be displayed on monitors external to the robot to assist system debugging and inspire ongoing development.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3