Author:
Huang Jhih-Yuan,Lee Wei-Po,Chen Chen-Chia,Dong Bu-Wei
Abstract
Developing dialogue services for robots has been promoted nowadays for providing natural human–robot interactions to enhance user experiences. In this study, we adopted a service-oriented framework to develop emotion-aware dialogues for service robots. Considering the importance of the contexts and contents of dialogues in delivering robot services, our framework employed deep learning methods to develop emotion classifiers and two types of dialogue models of dialogue services. In the first type of dialogue service, the robot works as a consultant, able to provide domain-specific knowledge to users. We trained different neural models for mapping questions and answering sentences, tracking the human emotion during the human–robot dialogue, and using the emotion information to decide the responses. In the second type of dialogue service, the robot continuously asks the user questions related to a task with a specific goal, tracks the user’s intention through the interactions and provides suggestions accordingly. A series of experiments and performance comparisons were conducted to evaluate the major components of the presented framework and the results showed the promise of our approach.
Funder
Ministry of Science and Technology of Taiwan
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献