Author:
Almeshal Abdullah,Alenezi Mohammad
Abstract
Time constraints is the most critical factor that faces the first responders’ teams for search and rescue operations during the aftermath of natural disasters and hazardous areas. The utilization of robotic solutions to speed up search missions would help save the lives of humans who are in need of help as quickly as possible. With such a human-robot collaboration, by using autonomous robotic solutions, the first response team will be able to locate the causalities and possible victims in order to be able to drop emergency kits at their locations. This paper presents a design of vision-based neural network controller for the autonomous landing of a quadrotor on fixed and moving targets for Maritime Search and Rescue applications. The proposed controller does not require prior information about the target location and depends entirely on the vision system to estimate the target positions. Simulations of the proposed controller are presented using ROS Gazebo environment and are validated experimentally in the laboratory using a Parrot AR Drone system. The simulation and experimental results show the successful control of the quadrotor in autonomously landing on both fixed and moving landing platforms.
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Reference22 articles.
1. A Fully-Autonomous Aerial Robot for Search and Rescue Applications in Indoor Environments using Learning-Based Techniques
2. Development of a Fuzzy GS-PID Controlled Quadrotor for Payload Drop Missions;Gue;J. Telecommun. Electron. Comput. Eng.,2018
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献