A Vision-Based Neural Network Controller for the Autonomous Landing of a Quadrotor on Moving Targets

Author:

Almeshal Abdullah,Alenezi Mohammad

Abstract

Time constraints is the most critical factor that faces the first responders’ teams for search and rescue operations during the aftermath of natural disasters and hazardous areas. The utilization of robotic solutions to speed up search missions would help save the lives of humans who are in need of help as quickly as possible. With such a human-robot collaboration, by using autonomous robotic solutions, the first response team will be able to locate the causalities and possible victims in order to be able to drop emergency kits at their locations. This paper presents a design of vision-based neural network controller for the autonomous landing of a quadrotor on fixed and moving targets for Maritime Search and Rescue applications. The proposed controller does not require prior information about the target location and depends entirely on the vision system to estimate the target positions. Simulations of the proposed controller are presented using ROS Gazebo environment and are validated experimentally in the laboratory using a Parrot AR Drone system. The simulation and experimental results show the successful control of the quadrotor in autonomously landing on both fixed and moving landing platforms.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference22 articles.

1. A Fully-Autonomous Aerial Robot for Search and Rescue Applications in Indoor Environments using Learning-Based Techniques

2. Development of a Fuzzy GS-PID Controlled Quadrotor for Payload Drop Missions;Gue;J. Telecommun. Electron. Comput. Eng.,2018

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision-Based Marker-Less Landing of an Unmanned Aerial System on Moving Ground Vehicle;Journal of Aerospace Information Systems;2024-09

2. Landing UAV on Moving Surface Vehicle: Visual Tracking and Motion Prediction of Landing Deck;2024 IEEE/SICE International Symposium on System Integration (SII);2024-01-08

3. Low altitude control for quadcopter using visual feedback;Archives of Electrical Engineering;2024-01-02

4. A survey of maritime unmanned search system: Theory, applications and future directions;Ocean Engineering;2023-10

5. Human-Centric UAV-UGV Collaboration;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3